Model Edwards Charge ======================= .. warning: This model is in beta. It isn't recommended that you use it unless you know what you're doing. Arguments: * `type` (string) - Name of the model to use (`MeltChiAB`) * `Nref` (float) - Reference degree of polymerization * `bref` (float) - Reference statistical segment length * `initfields` (json object) - Describes how to initialize fields within model. See :ref:`label_init_model_fields` * `charge_ref` (float) - Reference charge density * `B` or `u0` (float) - Excluded volume parameter :math:`B = u0 N_{ref}^2 / R_g^3`. Only one can be specified. * `C` or `rho0` (float) - System density :math:`C = \rho_0 R_g^3 / N_{ref}`. Only one can be specified. * `E` or `lB` (float) - Electrostatic interaction strength. Only one can be specified. Example (python):: import openfts fts = openfts.OpenFTS() ... fts.model(Nref=1.0,bref=1.0,charge_ref=1.0, C=6.0,B=0.3,E=64000.0,type='EdwardsCharge') ... Example (json) :: "model": { "B": 0.3, "C": 6.0, "E": 64000.0, "Nref": 1.0, "bref": 1.0, "charge_ref": 1.0, "initfields": { "mu": { "mean": 1.0, "stdev": 0.1, "type": "random" }, "phi": { "mean": 1.0, "stdev": 0.1, "type": "random" } }, "type": "EdwardsCharge" }, Model Edwards Charge Formalism ------------------------------- References: Delaney2017, Riggleman2012, Lee2008 The model .. math:: \beta U(\pmb{r}) = \beta U_{bond}(\pmb{r}) + \beta U_{int} where .. math :: \beta U_{int} = \frac{\nu}{2} \int d\pmb{r} \bar{\rho}(\pmb{r})^2 + \frac{\ell_B}{2} \int d\pmb{r} \int d\pmb{r'} \frac{\bar{\rho}_e(\pmb{r}) \bar{\rho}_e(\pmb{r'})}{|\pmb{r} - \pmb{r'}|} + self interaction where * :math:`\hat{\rho}` is the microscopic density defined as :math:`\hat{\rho} = \sum_{i=1}^n \int ds \delta(\pmb{r} - \pmb{r'}_(s))` * :math:`\hat{\rho}_e` is the microscopic charge density defined as :math:`\hat{\rho}_e = \sum_{i=1}^n \int ds \sigma_i(s) \delta(\pmb{r} - \pmb{r'}_(s))` * :math:`\sigma_i(s)` is the charge valence at position `s` of polymer `i` * :math:`\Gamma(\pmb{r}) = \frac{1}{(2\pi a^2)^{3/2}} \exp{\left(-\frac{\lvert\pmb{r}\rvert}{2 a^2} \right)}` is the smearing function * :math:`\bar{\rho}` is the smeared density defined as :math:`\bar{\rho} = \Gamma * \hat{\rho}(\pmb{r}) = \int d\pmb{r} \Gamma (\pmb{r} - \pmb{r}') \hat{\rho}(\pmb{r}')`. :math:`\bar{\rho}_e` is defined similarly. The field theory derived for this model is .. math:: \mathcal{Z} = \frac{Z_0}{Z_w Z_\varphi} \int \mathcal{D} w \int \mathcal{D} \varphi \exp{\left(-H[w,\varphi]\right)} where .. math:: H[w] = \frac{1}{2 \nu} \int d \pmb{r} [w(\pmb{r})]^2 - \sum_p^P n_p \ln Q_p[i \Gamma * w]. FIXME missing charge term By introducing the following variables :math:`B=\frac{\nu N^2}{R_{g0}^3}`, :math:`C=\frac{\rho_0 R_{g0}}{N}`, :math:`E=\frac{4\pi\ell_B\sigma^2N^2}{R_g}`, :math:`\tilde{V} = \frac{V}{R_{g0}^3}`, :math:`\pmb{x} = \frac{\pmb{r}}{R_{g0}}`, :math:`n_p = \frac{C \tilde{V} \phi_p}{\alpha_p}`, and :math:`\mu = i w(\pmb{r}) N` TODO: rescale phi field, (take a look at Duchs2014 if theres variables that were not defined), the field theory becomes TODO: lots of these rescaling conventions are recycled from model to model. Can I combine into one place? .. math:: H[\mu] = \frac{1}{2 B} \int d \pmb{x} [\mu(\pmb{x})]^2 + \frac{1}{2 E} \int d \pmb{x} | \nabla \varphi(\pmb{x})| ^2 - C \tilde{V} \sum_p^P \frac{\phi_p}{\alpha_p} \ln Q_p[\varphi, \mu; a]