Model Melt Chi AB

Arguments:

  • type (string) - Name of the model to use (MeltChiAB)

  • Nref (float) - Reference degree of polymerization

  • bref (float) - Reference statistical segment length

  • initfields (json object) - Describes how to initialize fields within model. See Initialize Model Fields

  • C or rho0 (float) - System density \(C = \rho_0 R_g^3 / N_{ref}\). Only one can be specified.

  • chiN or chi (float) - Flory-Huggins \(\chi\) parameter, optionally multiplied Nref. Only one can be specified.

  • inverse_zetaN or zeta (float) - Helfand compressibility parameter \(\zeta\), optionally multiplied Nref and inverted (i.e. \((\zeta N)^{-1}\)). Only one can be specified. Default: inverse_zetaN=0 (incompressible).

  • inverse_BC or B or u0 (float) - Excluded volume incompressiblity. \(B =\beta u_0 N^2 / R_g^3\) is the dimensionless excluded volume and \(C = n R_g^3 / V\). See Delaney2016 for details.

Note

Only one compressibility parameter (i.e. u0, B, zeta, inverse_zetaN or inverse_BC) can be specified.

Example (python)

import openfts
fts = openfts.OpenFTS()
...
fts.model(Nref=1.0,bref=1.0,chiN=20.,type='MeltChiAB')
...

Example (json)

"model": {
  "type": "MeltChiAB"
  "Nref": 1.0,
  "bref": 1.0,
  "chiN": 20 ,
  "initfields": {
    ... see "Initialize Model Fields" ...
  },
},

Model Melt Chi AB Formalism

\[\mathcal{Z} = \int \mathcal{D} w_+ \int \mathcal{D} w_- \exp{-H[w_+,w_-]}\]

The form of \(H[w_+,w_-]\) depends on the parameters.

  • Incompressible model inverse_BC = 0 or inverse_zetaN=0:

\[H[\mu_+,\mu_-] = C \int d \pmb{x} [\frac{1}{\chi N} \mu_-^2 - \mu_+] - C \tilde{V} \sum_{p=1}^P \frac{\phi_p}{\alpha_p} \ln Q_p[\Gamma \star \mu_A,\Gamma \star \mu_B].\]

where \(w_A = i w_+ - w_-\) and \(w_B = i w_+ + w_-\). where \(\mu_A = \mu_+ - \mu_-\) and \(\mu_B = \mu_+ + \mu_-\).

  • Helfand compressible model inverse_zetaN != 0:

\[H[\mu_+,\mu_-] = \frac{-C}{\chi N + 2 \zeta N} \int d \pmb{x} (\mu_+^2 + 2\zeta N \mu_+) + \frac{C}{\chi N} \int d\pmb{x} (\mu_-^2) - C \tilde{V} \sum_{p=1}^P \frac{\phi_p}{\alpha_p} \ln Q_p[\Gamma \star \mu_A,\Gamma \star \mu_B]\]
  • Excluded volume compressible model inverse_BC != 0:

\[H[\mu_+,\mu_-] = \frac{-C}{\chi N + 2 BC} \int d \pmb{x} (\mu_+^2) + \frac{C}{\chi N} \int d\pmb{x} (\mu_-^2) - C \tilde{V} \sum_{p=1}^P \frac{\phi_p}{\alpha_p} \ln Q_p[\Gamma \star \mu_A,\Gamma \star \mu_B]\]

Model Melt Chi AB Formalism (old)

TODO: add bold math using pmb{}

Fredrickson2006 (FIXME: add citation) shows us how to derive field theories of the form

\[\mathcal{Z} = \int \mathcal{D} w_+ \int \mathcal{D} w_- \exp{-H[w_+,w_-]}\]

where for a binany blend consisting of \(n_A\) A homopolymers and \(n_B\) B homopolymers (Model C), \(H[w_+,w_-]\) is given by,

\[H[w_+,w_-] = \rho_0 \int d r [\frac{1}{\chi} w_-^2 - i w_+] - n_A \ln Q[w_A] - n_B \ln Q[w_A,w_B]\]

where \(w_A = w_+ - w_-\) and \(w_B=w_+ + w_-\). For a diblock copolymer melt (Model E), \(H[w_+,w_-]\) is given by,

\[H[w_+,w_-] = \rho_0 \int d r [\frac{1}{\chi} w_-^2 - i w_+] - n \ln Q[w_A,w_B]\]

Where

\[Q[w_A,w_B] \frac{1}{V} \int dr q(r,N)\]

and \(q(r,s)\) is obtained by solving

\[\frac{\partial}{\partial s} q(r,s) = \frac{b(s)^2}{6} \nabla^2 q(r,s) - w(r,s) q(r,s),\]

subject to the initial condition \(q(r,0) = 1\).

To generalize these two models to any number of different polymers, with any block sequence, length or architecture, we follow the procedure described in Duchs2014 (FIXME: add citation). We define our system to consist of a volume \(V\), consisting of \(n\) total molecules consisting of \(P\) distinct molecule types. We define \(n_p\) to be the number of molecules of type \(P\) such that

\[n = \sum_{p=1}^P n_p\]

\(N_p\) is the number of degrees of freedom of molecule type \(p\), which here we take as the degree of polymerization without loss of generality. We define a reference \(N = N_{ref}\) which we use to normalize all chain lengths such that \(N_p = N \alpha_p\). The overall density of monomers is \(\rho_0 = \sum_{p=1}^P \frac{n_p N_p}{V}\) and all statistical segements were defined relative to the same reference volume \(v_0 = 1/\rho_0\). For this system \(H[w_+,w_-]\) is

\[H[w_+,w_-] = \rho_0 \int d r [\frac{1}{\chi} w_-^2 - i w_+] - \sum_{p=1}^P n_p \ln Q_p[w_A,w_B]\]

We now introduce introduce the fields \(\mu_i = \gamma_i w_i N\) where \(i \in {+,-}\), and \(\gamma_i = {1,\sqrt{-1}}\) depending on whether the field is Wick rotated. For this model \(\mu_+ = i w_+ N\) and \(\mu_- = w_- N\). We also rescale lengths in our model \(x=r/R_g\) relative to \(R_g = \sqrt{\frac{b^2N}{6}}\), the radius of gyration of reference polymer chain with statistical segment length \(b = b_{ref}\). By introducing \(C = \frac{\rho_0 R_g^3}{N}\), the dimentionless chain concentration, our field theory is now

\[H[\mu_+,\mu_-] = C \int d x [\frac{1}{\chi N} \mu_-^2 - \mu_+] - \sum_{p=1}^P n_p \ln Q_p[\mu_A,\mu_B],\]

where \(\mu_A = \mu_+ - \mu_-\) and \(\mu_B = \mu_+ + \mu_-\). It is convenient to work with polymer volume fractions \(\phi_p = \frac{n_p N_p}{\sum_{i=1}^P n_i N_i}\) instead of explicit molecule numbers \(n_p\). This can be acomplished by first manipulating the expression for \(\phi_p\)

\[\phi_p = \frac{n_p N_p}{\sum_{i=1}^P n_i N_i} = \frac{n_p \alpha_p N} {\rho_0 V}\]

and then solving for \(n_p = \frac{\phi_p \rho_0 V}{\alpha_p N}\). Introducing the dimentionless volume \(\tilde{V} = V/R_g^3\)

\[n_p = \frac{\phi_p \rho_0 V}{\alpha_p N} = \frac{\phi_p \rho_0 R_g^3 \tilde{V}}{\alpha_p N} = \frac{C \tilde{V} \phi_p}{\alpha_p}\]

We now have the expression used in the code,

\[H[\mu_+,\mu_-] = C \int d x [\frac{1}{\chi N} \mu_-^2 - \mu_+] - C \tilde{V} \sum_{p=1}^P \frac{\phi_p}{\alpha_p} \ln Q_p[\mu_A,\mu_B].\]

With this non-dimentionalization

\[Q_p[\mu_A,\mu_B] = \frac{1}{\tilde{V}} \int d x q_p(x,\alpha_p)\]

and

\[\frac{\partial}{\partial s} q(r,s) = \frac{b(s)^2}{b^2} \tilde{\nabla}^2 q(r,s) - \mu_p (r; s) q(r,s),\]

where \(\tilde{\nabla}^2 = R_g^2 \nabla^2\), \(s \in [0,\alpha_p]\), \(q(x,0) = 1\), \(\mu(r,s)\) is the field corresponding to the species at contour position s along molecule p.

The density operator \(\varphi_j\) of species j is

\[\varphi_j (r ; [\mu_+, \mu_-]) = \sum_{p=1}^P \frac {\phi_p}{Q_p \alpha_p} \int_{s \in j} ds q_p(x,s) q^\dagger_p(x,s)\]

FIXME. It would be more clear to write \(\frac{\delta Q[i\Gamma * \mu]} {\delta \mu_j (\pmb{r})}\) instead of the ds integral. This would be true for any chain model. Also should note that \(\varphi_j = \tilde{\rho_j}/\rho_0\), since most of GHF works with \(\tilde{\rho}\). Also, should I change to \(\tilde{\varphi_j}\) and modify my notation so that anything with a tilde is a field-theoretic operator?

The forces for this model are

\[\begin{split}\frac{\delta H[\mu_+,\mu_-]}{\delta \mu_+(x)} &= C \left(\varphi_A(x) + \varphi_B(x) - 1\right)\\ \frac{\delta H[\mu_+,\mu_-]}{\delta \mu_-(x)} &= C \left(\frac{2}{\chi N} \mu_- (x) + \varphi_B(x) - \varphi_A(x) \right)\end{split}\]

The code also has a model with a Helfand compressibility implemented (see Delaney 2016 or Josh’s Notebook #2, p 118) which has the following form

\[H[\mu_+,\mu_-] = \frac{-C}{\chi N + 2 \zeta N} \int d \pmb{x} (\mu_+^2 + 2\zeta N \mu_+) + \frac{C}{\chi N} \int d\pmb{x} (\mu_-^2) - C \tilde{V} \sum_{p=1}^P \frac{\phi_p}{\alpha_p} \ln Q_p[\mu_A,\mu_B]\]

with forces

\[\begin{split}\frac{\delta H[\mu_+,\mu_-]}{\delta \mu_+(\pmb{x})} &= \frac{-C}{\chi N + 2 \zeta N} (2 \mu_+ + 2\zeta N) + C \left(\varphi_A(x) + \varphi_B(x) \right) \\ \frac{\delta H[\mu_+,\mu_-]}{\delta \mu_-(\pmb{x})} &= C \left(\frac{2}{\chi N} \mu_- (x) + \varphi_B(x) - \varphi_A(x) \right)\end{split}\]